Characterization and investigation of zebrafish models of filamin-related myofibrillar myopathy.
نویسندگان
چکیده
Myofibrillar myopathies are a group of muscle disorders characterized by the disintegration of skeletal muscle fibers and formation of sarcomeric protein aggregates. All the proteins known to be involved in myofibrillar myopathies localize to a region of the sarcomere known as the Z-disk, the site at which defects are first observed. Given the common cellular phenotype observed in this group of disorders, it is thought that there is a common mechanism of pathology. Mutations in filamin C, which has several proposed roles in the development and function of skeletal muscle, can result in filamin-related myofibrillar myopathy. The lack of a suitable animal model system has limited investigation into the mechanism of pathology in this disease and the role of filamin C in muscle development. Here, we characterize stretched out (sot), a zebrafish filamin Cb mutant, together with targeted knockdown of zebrafish filamin Ca, revealing fiber dissolution and formation of protein aggregates strikingly similar to those seen in filamin-related myofibrillar myopathies. Through knockdown of both zebrafish filamin C homologues, we demonstrate that filamin C is not required for fiber specification and that fiber damage is a consequence of muscle activity. The remarkable similarities in the myopathology between our models and filamin-related myofibrillar myopathy makes them suitable for the study of these diseases and provides unique opportunities for the investigation of the function of filamin C in muscle and development of therapies.
منابع مشابه
Myofibrillar instability exacerbated by acute exercise in filaminopathy.
Filamin C (FLNC) mutations in humans cause myofibrillar myopathy (MFM) and cardiomyopathy, characterized by protein aggregation and myofibrillar degeneration. We generated the first patient-mimicking knock-in mouse harbouring the most common disease-causing filamin C mutation (p.W2710X). These heterozygous mice developed muscle weakness and myofibrillar instability, with formation of filamin C-...
متن کاملBiomechanical characterization of myofibrillar myopathies.
Myofibrillar myopathies (MFMs) are a group of sporadic and hereditary skeletal muscle diseases, which lead to severe physical disability and premature death. Most MFMs are caused by mutations in genes encoding desmin, plectin, VCP, filamin C, BAG3, FHL-1, αB-crystallin, DNAJB6, myotilin, and ZASP. Biomechanical studies on primary human myoblasts carrying desmin and plectin mutations showed incr...
متن کاملFilamin C accumulation is a strong but nonspecific immunohistochemical marker of core formation in muscle.
Filamin C is the muscle isoform of a group of large actin-crosslinking proteins. On the one hand, filamin C is associated with the Z-disk of the myofibrillar apparatus and binds to myotilin; on the other hand, it interacts with the sarcoglycan complex at the sarcolemma. Filamin C may be involved in reorganizing the cytoskeleton in response to signalling events and in muscle it may, in addition,...
متن کاملDistal myopathy with upper limb predominance caused by filamin C haploinsufficiency.
OBJECTIVE In this study, we investigated the detailed clinical findings and underlying genetic defect in 3 presumably related Bulgarian families displaying dominantly transmitted adult onset distal myopathy with upper limb predominance. METHODS We performed neurologic, electrophysiologic, radiologic, and histopathologic analyses of 13 patients and 13 at-risk but asymptomatic individuals from ...
متن کاملThe Z-disc proteins myotilin and FATZ-1 interact with each other and are connected to the sarcolemma via muscle-specific filamins.
Myotilin and the calsarcin family member FATZ-1 (also called calsarcin-2 or myozenin-1) are recently discovered sarcomeric proteins implicated in the assembly and stabilization of the Z-discs in skeletal muscle. The essential role of myotilin in skeletal muscle is attested by the observation that certain forms of myofibrillar myopathy and limb girdle muscular dystrophy are caused by mutations i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 21 18 شماره
صفحات -
تاریخ انتشار 2012